数据挖掘论文(专硕毕业论文能写文献数据挖掘吗)
本文目录
- 专硕毕业论文能写文献数据挖掘吗
- 数据挖掘在软件工程技术中的应用毕业论文
- 数据挖掘的算法及技术的应用的研究论文
- python数据挖掘技术及应用论文怎么写
- 数据挖掘技术在临床医学的应用研究
- 数据挖掘能作为硕士毕业论文吗
- 医学数据挖掘论文好发吗
专硕毕业论文能写文献数据挖掘吗
能。专硕是专业型硕士的简称,属于学位类型的一种。专硕毕业论文就是专业型硕士在毕业前写的毕业论文。文献内容可以是中文或者英文,很多博士生毕业论文、硕士生毕业论文通常对自己的研究很有帮助,很适合作为参考文献。专硕毕业论文能写文献数据挖掘。数据挖掘指的是在大型的数据库中对有价值的信息知识进行获取,属于 一种先进的数据信息模式。
数据挖掘在软件工程技术中的应用毕业论文
数据挖掘在软件工程技术中的应用毕业论文
【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。
【 关键词 】数据挖掘技术;软件工程中;应用软件技术
随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。
1数据挖掘技术应用存在的问题
1.1信息数据自身存在的复杂性
软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。
1.2在评价标准方面缺乏一致性
数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。
2数据挖掘技术在软件工程中的应用
2.1数据挖掘执行记录
执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。
2.2漏洞检测
系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的’模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.
2.3开源软件
对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。
2.4版本控制信息
为了保证参与项目人员所共同内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。
3数据挖掘在软件工程中的应用
3.1关联法
该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。
3.2分类方法
该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。
3.3聚类方法
该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。
4数据挖掘在软件工程中的应用
4.1对克隆代码的数据挖掘
在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。
4.2软件数据检索挖掘
该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。
①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。
②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。
③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。
4.3应用于设计的三个阶段
软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。
4.4面向项目管理数据集的挖掘
软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。
5结束语
软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。
参考文献
.电脑知识与技术,2016(34).
.电子测试,2014(02).
.中国新通信,2015(15).
;数据挖掘的算法及技术的应用的研究论文
数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
4.1市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
4.2金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
.电脑与信息技术, 2017, 25 (1) :59-62.
.数字技术与应用, 2016 (5) :108-108.
;python数据挖掘技术及应用论文怎么写
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。
数据挖掘技术在临床医学的应用研究
数据挖掘技术在临床医学的应用研究
21世纪是一个高度信息化的时代,随着计算机信息技术的飞速发展及医院信息化平台建设的需要,越来越多的软件公司设计开发出各种各样的医疗管理系统来满足各个医院的需求。
【摘要】 本文首先从数据挖掘技术的基本概念出发,对临床医疗数据的特点进行分析,探讨了数据挖掘技术在临床医学领域中的应用,并对它在未来的临床医疗应用及发展提出展望。
【关键词】 数据挖掘;临床医学;医疗系统;应用
一、前言
县、市级以上综合医院,随着医院无纸化办公系统的引入,各医院对医疗信息管理系统的依赖程度越来越强烈,使用的信息管理系统越来越多,导致医院管理越来越复杂。
然而随着时间的积累,各个医院信息管理系统中存储了大量的数据资源,其中包含文字、声音、图像、视频、影像等各种医疗数据,传统的简单的数据的查询已经逐渐无法满足医院管理者的需求
。如何从大量的医疗数据中提取有利于服务临床实践和领导管理决策的数据显得尤为重要,数据挖掘技术在此方面的运用也就应允而生。因此,提高对这些信息资源的利用水平,通过更加有效的分析、整合和利用这些数据,能够更好地为患者、医务人员、科研人员及管理人员提供全面、准确和及时的决策依据,是当今医药卫生行业急需解决的问题。
二、数据挖掘技术的概念
数据挖掘(DataMining),又译为资料探勘,它是指从大量的、不完整的、模糊的各种数据中提取隐藏的、不被人发现的、但又存在有价值信息的探索过程。它是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的基本思想是从各种数据中抽取有价值的.信息,目的是帮助决策者寻找数据间的潜在联系,从中发现被忽略的要素,而这些信息对预测和决策行为是非常有用的。
数据挖掘的步骤会随不同领域的应用而有所变化,每一种数据挖掘技术也会有各自的特性和使用步骤,针对不同问题和需求所制定的数据挖掘过程也会存在差异。此外,数据的完整程度、专业人员支持的程度等都会对建立数据挖掘过程有所影响。这些因素造成了数据挖掘在各不同领域中的运用、规划,以及流程的差异性,即使同一产业,也会因为分析技术和专业知识的涉入程度不同而不同,因此对于数据挖掘过程的系统化、标准化就显得格外重要。
三、临床医疗数据的特点
1.数据多样。临床医疗数据成千上万,包括文字、声音、图片、符号、影像、视频等,所以结构类型众多,这是它的最显著特点。由于数据探索发现比较困难,使得开发通用的医疗数据软件系统较为复杂。
2.数据量巨大。随着人们生活水平的不断提高,越来越多的人把身体健康放在首位,不定期去医院做体验,医院各种医疗设备就会产生成千上万条的医疗数据信息,最终导致医疗数据量急速增长。
3.数据表征不显著。医疗数据有文字、图形等非数值型数据,使得数据挖掘人员很难找到数据间的对应关系。不同医生的医技水平不同,在诊疗过程中诊断病人情况可能存在不确定性,导致诊断结果不完整,也就难以发掘准确信息,最终导致每天都有大量相同或相近的数据产生,造成医疗数据的大量冗余。
4.数据标准不统一。在医学界,很多药物的命名都没有统一的规范标准,例如一个简单的中药,也有很多别名,例如荷花,别名莲花、六月花神、水芝、水芸、藕花、水芙蓉、君子花、天仙花等。
5.数据安全重要性。病人在医院治疗完成后会留下各种医疗数据,很多数据都是病人的隐私,医院管理者在进行数据分析与资源共享时,要保证数据资料的安全性,以防泄露病人隐私。
四、数据挖掘技术在临床医学领域中的应用
1.在医疗诊断中的应用随着我国医院信息化平台建设的升级,各个大型医院都在进行信息化平台投资建设,逐步采用了适合自己医院的电子病历系统,并实现医院内部信息共享,当不同科室的医生在进行数据分析时,可以将不同病人的各种检验检查结果与各种病症情况对应,建立一个详细的医疗诊断数据仓库,医生可以根据这个数据仓库进行快速、准确诊断,从而有效提高医生的诊断效率。同时,还能准确记录不同病种不同年龄段病人数,方便医院管理者以后进行数据统计分析、研究。
2.在医疗保险中的应用随着国家对医疗保险政策的不断改革,我国住院病人中使用医疗保险进行报销费用的比例逐年升高,由于各种原因,医疗保障制度是城乡分离的,如何帮助医院管理者快速而准确地掌握医保病人费用及自费比例,是各医院管理的一项重要工作。利用数据挖掘技术创建医院信息系统与各类医疗保险的数据接口,建立药品、材料、诊疗项目等的对照表,制作医嘱、费用传输模块,实现各个医院医疗数据上传与下载,便于医疗保险部门和医院管理者对医保病人进行实时审核、监督管理,合理控制其医疗费用。
3.在医院管理中的应用通过对医院各种医疗数据进行采集、整理、分析与挖掘,医院可形成一份数据完整的分析报告,能为医院管理者们提供高质量的医疗数据结果,对决策医院管理、控制医疗成本、掌握医疗费用、分析经济效益、提高医疗服务质量等起到重要作用。例如,通过对病人看病等候时间、就诊情况进行分析,可以优化门诊就医流程,对医护人员配置进行相应调整,从而提高医院工作效率,更好地为病人服务。
4.在医疗科研中的应用医疗科学研究也是医院的重要工作之一,比如通过对历史病例资料的整理与分析,研究者可形成一份高质量的医疗科研论文;通过对基因工程学的学习与研究,研究者能用科学的方法有效预测未来,从而获得新品种、生产出新产品。
五、未来展望
医学,是通过科学或技术的手段处理人体的各种疾病或病变的学科,是一门特殊专业,它具有一定的特殊性和复杂性,各个医院在建设医院信息化平台时应该选择适合自己的临床医疗数据分析与挖掘工具,充分利用好数据挖掘这一关键技术,对临床医疗数据进行正确采集、分析与挖掘,尽可能大的发挥它在医学信息获取中的最大价值,从而更好地为医学事业服务,为医院工作服务,最终让更多的患者受益终身!
参考文献
.中国数字医学,2015(8).
.价值工程,2010(36):95.
.中国信息科技,2016(6).
.机电技术,2016(6).
.北京:机械工业出版社,2014.
.中国卫生信息管理杂志,2013(4):296-300.
;数据挖掘能作为硕士毕业论文吗
数据挖掘不能作为硕士毕业论文的。写纯粹的数据挖掘算法类的论文是不行的,不过可以将数据挖掘应用到某一个系统中,写数据挖掘的应用,这个应该是可以的。
医学数据挖掘论文好发吗
医学数据挖掘论文不好发。发表论文本身并不是一件容易的事儿,需要花费大量的时间和精力,尤其是医学方面的论文,相较其它行业的论文来说发表难度更大一些,医学论文代表着权威性,专业性,并不是简简单单就可以通过的。
本文相关文章:
服装设计论文(服装设计毕业论文参考(服装设计毕业论文开题报告))
2024年6月13日 06:20
水利水电工程论文(我需要一份水利水电专业的(专科)的毕业论文内容要详实的好的话会有追加分数,路边货就算了呵呵)
2024年5月19日 17:10
水利水电工程论文(我需要一份水利水电专业的(专科)的毕业论文内容要详实的好的话会有追加分数,路边货就算了呵呵)
2024年5月19日 17:10
信息管理与信息系统毕业论文(急需一篇计算机信息管理与信息系统毕业论文,字数6000以上,谁能帮帮忙啊)
2024年5月8日 13:10
信息管理与信息系统毕业论文(急需一篇计算机信息管理与信息系统毕业论文,字数6000以上,谁能帮帮忙啊)
2024年5月8日 13:10
9位老师教1名学生(山东济南一小伙拍毕业照全班9个老师1个学生,这张照片背后有何故事)
2024年5月2日 11:50
电大护理专业毕业论文(电大毕业论文要求是什么,我是远程教育的本科生)
2024年5月2日 10:00
更多文章:
建设工程项目管理(建设工程项目管理和建设工程管理这二者的区别)
2024年4月10日 21:00
同一天生日的夫妻,同一天生日的情侣有什么利弊?同一天生日的人叫什么,遇到相同生日的人好吗
2024年4月12日 19:00