八年级数学的知识点归纳?知识汇总 | 八年级数学
本文目录
- 八年级数学的知识点归纳
- 知识汇总 | 八年级数学
- 怎样引导八年级学生学好数学|八年级学生数学学情分析
- 初二数学
- 2022八年级数学下学期教学工作总结
- 《探索三角形全等的条件》说课稿
- 八年级数学必备知识点总结
- 华师大版八年级上册数学课件
- 八年级上册数学分式课件
- 人教版八年级上册数学课件
八年级数学的知识点归纳
学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
数学知识点八年级
【统计的初步认识】
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充内容:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
课后练习
1.统计学的基本涵义是(D)。
A.统计资料
B.统计数字
C.统计活动
D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。
A.每一个国有工业企业
B.该地区的所有国有工业企业
C.该地区的所有国有工业企业的生产经营情况
D.每一个企业
3.要了解20个学生的学习情况,则总体单位是(C)。
A.20个学生
B.20个学生的学习情况
C.每一个学生
D.每一个学生的学习情况
4.下列各项中属于数量标志的是(B)。
A.性别
B.年龄
C.职称
D.健康状况
初二下册数学知识点 总结
【抽样调查】
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1.抽样成数是一个(A)
A.结构相对数B.比例相对数C.比较相对数D.强度相对数
2.成数和成数方差的关系是(C)
A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大
C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A.全面调查B.非全面调查C.一次性调查D.经常性调查
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A.甲产品大B.乙产品大C.相等D.无法判断
数学知识点八年级
菱形的判定定理
1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。
八年级数学知识点相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 八年级数学知识点整理归纳
★ 八年级数学知识点总结
★ 初二数学上册知识点总结
★ 初二数学知识点归纳
★ 初二数学知识点复习整理
★ 八年级数学上知识点归纳
★ 八年级数学上册知识点归纳
★ 八年级上册数学知识点整理
知识汇总 | 八年级数学
根据《义务教育数学课程标准(2011年版)》, 数学 是研究数量关系和空间形式的科学。根据百度百科, 数学 是研究数量、结构、变化、空间以及信息等概念的一门学科。 数学是自然科学和技术科学的基础,是学习和研究现代科学技术必不可少的基本工具。通过数学学习,不只是提高计算能力,还能够培养和提升抽象思维能力和逻辑推理能力。 义务教育阶段数学课程目标分为总目标和学段目标,从知识技能、数学思考、问题解决、情感态度等四个方面进行评估。初中数学是《义务教育数学课程标准(2011年版)》的第三学段:第三学段(7~9年级)。 第三学段在知识技能方面,一是体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。 二是探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;探索并理解平面直角坐标系,能确定位置。 三是体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。 第三学段在数学思考方面,一是通过用代数式、方程、不等式、函数等表述数量关系的过程, 体会模型的思想,建立符号意识 ;在研究图形性质和运动、确定物体位置等过程中,进一步 发展空间观念 ;经历借助图形思考问题的过程,初步 建立几何直观 。 二是了解利用数据可以进行统计推断, 发展建立数据分析观念 ;感受随机现象的特点。 三是体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式的数学活动中, 发展合情推理与演绎推理的能力 。 四是能独立思考,体会数学的基本思想和思维方式。 《义务教育数学课程标准(2011年版)》的学段课程内容都分为「数与代数」、「图形与几何」、「统计与概率」、「综合与实践」四个部分。 在学习的时候,按照每册课本的内容进行学习,又可以参照四个部分对每册的内容进行组合,从全局到部分,更好地掌握所学的内容。 (1)了解无理数的概念。无限不循环小数称为 无理数 。 (2)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的 算术平方根 ,记作√a,读作「根号a」。一般地,如果一个数x的平方等于a,即x²=a,那么这个数x就叫做a的 平方根 (也叫做 二次方根 )。求一个数a的平方根的运算,叫做 开平方 ,a叫做被开方数。一般地,如果一个数x的立方等于a,即x³=a,那么这个数x就叫做a的 立方根 (也叫做 三次方根 )。求一个数a的立方根的运算叫做 开立方 ,a叫做被开方数。 (2)掌握平方根和立方根的性质,了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。 (3)了解实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数、倒数与绝对值。有理数和无理数统称为 实数 ,即实数可以分为有理数和无理数。 (4)能用有理数估计一个无理数的大致范围。 (5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。 (6)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。一般地,形如√a(a≥0)的式子叫做 二次根式 ,a叫做被开方数。一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做 最简二次根式 。化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。 (1)了解因式分解的概念。把一个多项式化成几个整式的积的形式,这种变形叫做 因式分解 (也可称为分解因式)。 (2)了解公因式的概念,能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。把多项式各项都含有的相同因式,叫做这个多项式的 公因式 。如果一个多项式的各项含有公因式,那么久可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做 提公因式法 。根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做 公式法 。 (5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。用A,B便是两个整式,A÷B可以表示成A/B的形式,如果B中含有字母,那么称A/B为 分式 ,其中A称为分式的 分子 ,B称为分式的 分母 。分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。把一个分式的分子和分母的公因式约去,这种变形称为分式的 约分 。分子和分母已没有公因式,这样的分式称为 最简分式 。化简分式时,通常要使结果成为最简分式或者整式。根据公式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分。异分母通分时,通常取最简单的公分母(简称 最简公分母 )作为它们的共同分母。 (6)了解分式方程的概念,能解可化为一元一次方程的分式方程。分母中含有未知数的方程叫做 分式方程 。在分式方程中,使得原分式方程的分母为零的根,称为原方程的 增根 。解分式方程的步骤一般是先化成一元一次方程,再跟进一元一次方程的求解步骤求解,减去增根,就是分式方程的根。 (1)了解二元一次方程和二元一次方程组的概念。含有两个未知数,并且所含未知数的项的次数都是1的方程叫做 二元一次方程 。共含有两个未知数的两个二元一次方程所组成的一组方程,叫做 二元一次方程组 。适合一个二元一次方程的一组未知数的值,叫做这个 二元一次方程的一个解 。二元一次方程组中各个方程的公共解,叫做这个 二元一次方程组的解 。 (2)掌握代入消元法和加减消元法,能解二元一次方程组。将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并带入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为 代入消元法 ,简称 代入法 。通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做 加减消元法 ,简称 加减法 。 (4)体会二元一次方程与一次函数的关系。一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线。一般地,从图形的角度看,确定两条直线的交点的坐标,相当于求相应的二元一次方程组的解;解一个二元一次方程组相当于确定相应两条直线交点的坐标。 (5)了解三元一次方程和三元一次方程组的概念。含有三个未知数,并且所含未知数的项的次数都是1的方程叫做 三元一次方程 。共含有三个未知数的三个一次方程所组成的一组方程,叫做 三元一次方程组 。三元一次方程组中各个方程的公共解,叫做这个 三元一次方程组的解 。 (6)能解简单的三元一次方程组。一般使用代入消元法和加减消元法,化为二元一次方程组求解。 (1)结合具体问题(不等关系),了解不等式的意义,探索不等式的基本性质。一般地,用符号「<」(或「≤」)、「>」(或「≥」)连接的式子叫做 不等式 。 (2)能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。能使不等式成立的未知数的值,叫做 不等式的解 。一个含有未知数的不等式的所有解,组成这个 不等式的解集 。求不等式解集的过程叫做 解不等式 。左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做 一元一次不等式 。一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个 一元一次不等式组 。一元一次不等式组中各个不等式的解集的公共部分,叫做这个 一元一次不等式组的解集 ,求不等式组解集的过程,叫做 解不等式组 。 (3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 (4)体会一元一次不等式与一次函数的关系,能结合一次函数的图像用坐标系求不等式关系。 (1)探索简单实例中的数量关系和变化规律,了解常量、变量(自变量、因变量)的意义,了解变量间关系的三种表示法(表哥、关系式、图像)。在变量关系中,随自变量的变化而变化的变量是因变量。在变化过程中数值始终不变的量叫做 常量 。 (2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的 函数 ,其中x是自变量。函数的表示方法一般有:列表法、关系式法和图像法。 (3)能结合图像(直角坐标系)对简单实际问题中的函数关系进行分析。 (4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。 (5)能用适当的函数表示法刻画简单实际问题中变量之间的关系。 (6)结合对函数关系的分析,能对变量的变化情况进行初步讨论。 (1)结合具体情境体会一次函数的意义,理解函数和正比例函数的概念,能根据已知条件确定一次函数的表达式。若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的 一次函数 ,特别地,当b=0时,称y时x的 正比例函数 。 (2)能画出一次函数的图像,根据一次函数的图像和表达式 y = kx + b ( k ≠0)探索并理解 k >0和 k <0时,图像的变化情况。把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该 函数的图像 。 (3)体会一次函数与一元一次不等式的关系。 (4)体会一次函数与二元一次方程的关系。一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线。一般地,从图形的角度看,确定两条直线的交点的坐标,相当于求相应的二元一次方程组的解;解一个二元一次方程组相当于确定相应两条直线交点的坐标。 (5)会利用待定系数法确定一次函数的表达式。先设出函数表达式(一般形式y=kx+b),再根据所给条件(变成二元一次方程组)确定表达式中未知的系数,从而得到函数表达式的方法,叫做 待定系数法 。该方法是用二元一次方程组确定一次函数表达式的方法。 (6)能用一次函数解决简单实际问题。 (1)掌握平行线的判定定理。两条直线被第三条直线所截,如果内错角相等,那么两直线平行。两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。 (2)掌握平行线的性质(定理)。 (1)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:(定理)等腰三角形的两底角相等;(推论)等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。了解反证法:在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或一直条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法。 (2)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。掌握判定定理:有两个角互余的三角形是直角三角形。 (3)探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。直角三角形两直角边的平方和等于斜边的平方。满足勾股定理a²+b²=c²的三个正整数,称为 勾股数 。勾股定理的逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。了解互逆命题、逆命题和逆定理的概念。 (4)探索并掌握判定直角三角形全等的「斜边、直角边」定理。斜边和一条直角边分别相等的两个直角三角形全等。 (5)探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。 (6)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。 (7)掌握三角形内角和定理,了解三角形外交的概念及其定理。 (1)通过具体实例,了解定义、命题、定理、推论的意义和概念,了解命题的组成。对某些名称和术语形成共同的认识,对名称和术语的含义加以描述,做出明确的固定,就是给出它们的 定义 。判断一件事情的句子,叫做 命题 。一般地,每个命题都由 条件 和 结论 两部分组成。正确的命题称为 真命题 ,不正确的命题称为 假命题 。公认的真命题称为 公理 。除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断,演绎推理的过程称为 证明 ,经过证明的真命题称为 定理 。每个定理都只能用公理、定义和已证明为真的命题来证明。由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论。 (2)结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为 互逆命题 ,其中一个命题称为另一个命题的 逆命题 。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的 逆定理 。 (3)知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。 (4)了解反例的作用,知道利用反例可以判断一个命题是错误的。 (5)通过实例体会反证法的含义。 (1)理解轴对称与坐标的变化。 (1)通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等。在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。 (2)认识并欣赏平移在自然界和现实生活中的应用。 (1)通过具体实例认识平面图形关于旋转中心的旋转。探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,任意一组对应点分别与旋转中心连线所成的角都等于旋转角;对应线段相等,对应角相等。在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为 旋转 ,这个定点称为 旋转中心 ,转动的角度称为 旋转角 。 (2)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做 中心对称图形 ,这个点叫做它的 对称中心 。 (1)结合实例进一步体会用有序数对可以表示物体的位置(回顾四年级上册图形与几何的方向与位置的内容)。在平面内,确定一个物体的位置一般需要两个数据。在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应。 (2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向,水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点。 (3)在实际问题中,能建立适当的直角坐标系,描述物体的位置。 (4)能用平面直角坐标系描述轴对称的位置变化。 1.理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。一般地,对于n个数x1,x2,...,xn,我们把(x1+x2+...+xn)/n叫做这n个数的 算术平均数 ,简称 平均数 。 加权平均数 是不同比重数据(权)的平均数。一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最多的那个数据叫做这组数据的众数。 2. 体体会刻画数据离散程度的意义,了解极差,会计算简单数据的方差,了解它们是刻画数据离散程度的统计量。一组数据中最大数据与最小数据的差(称为极差),是刻画数据离散程度的一个统计量。 方差 是各个数据与平均数差的平方的平均数,而 标准差 就是方差的算术平方根。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。 根据标准,在7-9年级是《义务教育数学课程标准(2011年版)》第三学段,数学课程内容(含每个年级)也可以分为「数与代数」、「图形与几何」、「统计与概率」等几个部分。并且,每一册的内容是否都有「数与代数」、「图形与几何」、「统计与概率」三个部分的内容。初中数学的学习,是要获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本方法、基本活动经验。
怎样引导八年级学生学好数学|八年级学生数学学情分析
谈八年级数学的学习 八年级是数学知识掌握的关键阶段,这一时期可以形成良好的学习方法,同时又是知识 系统形成的开端,这一时期往往是走进数学知识大门的分水岭。在初中数学教学中流传一个说法:“初一势均力敌,初二两极分化,初三天上地下。”从每年的统计来看,进入八年级的学生数学学习两极分化呈现较严重趋势,后进生占的百分比例较大,这种情况直接影响着大 面积提高教学质量。八年级数学学习出现两极分化原因分析如下: 1. 缺乏学习数学的兴趣和学习意志薄弱是造成分化的主要内在心理因素。 2. 掌握知识、技能不系统,没有形成较好的数学认知结构,不能为连续学习提供必要的认 知基础。 3. 思维方式和学习方法不适合数学学习要求。 避免两极分化,让后进生锲而不舍的学习数学,是我们应关注的话题,引导学生学好数学也是我们的当务之急。要解决这些问题,我认为应该从以下几方面做起: 一.课堂上培养学生的数学能力。 数学能力的培养主要在课堂上进行,所以要重视课内的学习效率,寻求正确的学习方法。提高听课效率的途径有以下几方面:1课前准备:预习是很有必要的。新知识接受之前,应完成提前预习。每天完成当天学习课程外,每晚都应预习第二天的知识,课堂上才能更好地听课,有高层次的知识收获。这就是课前知识准备。同时也要做好课前用品准备,精力准备,心理准备。2. 课内独立思考,专心听讲:北京大学的一位数学教授认为:“学会独立思考,不要轻易问别人怎样做题。试着享受自己得到答案的快感。”同时也要有耐心地去思考。“学而不似则罔。”课堂上如果不善于思考,老师讲的再好也是没有效果的。因此课堂上不仅要积极地想。要边听边积极思维,要跟着老师的思路想。听,是指听老师讲,听同学讲他的见解和主张。比较老师和同学们解法、看法的区别,寻求自己的思路捷径。 3. 仔细看:要看老师的板书步骤,看老师和同学的画图与演示,看课文中关键词语和段落。 4. 敢于问:陶行知先生说过:“发明千千万,起点是一问。禽兽不如人,过在不会问。智 者问的巧,愚者问的笨。人力胜天工,只在每事问。”课堂上要敢问,敢于发表自己的 见解,敢于暴露自己的问题。只要是经过自己反复思考的不论正确与否,都要勇敢地讲 出来,让同学和老师了解自己的疑问,听老师和同学是怎样解决这个问题的。切忌不懂 装懂。 5. 重点知识点要记:就是课堂笔记。“笔记”是人脑的外存储器,是人记忆能力的延伸。 课堂上除了要专心听讲外,适当地做笔记有利于理解和记忆所学知识,促进积极思维,增强听课效果。研究发现,做笔记的人比不做笔记的人在考试的时候成绩要好得多。课 堂上应记些什么?一般认为应记以下几方面的内容:(1)记知识结构。(2)记重要内容和 典型事例。(3)记课本上没有的内容。(4)记不懂的问题。(5)记听课的 心得体会 。如对某 个问题过去不理解,现在突然明白了,由此产生一些联想;对某个问题的学习过程中有 时往往会产生一些新想法。这些想法稍纵即失,应及时记下,有利于提高学习质量。 二.习惯培养:培养良好的学习习惯和做题习惯及课外整理习惯。 1. 培养审题习惯:很多同学已知条件读不全,读不懂,其实这是做题没有思路的主要原因。 你仔细体会一下,越是综合的题目就越需要你从已知条件中去“挖”,挖掘新的已知。 所以这点就格外重要。就需要我们在平时学习努力克服审题不够,匆匆一看急于下笔的 不严谨做法。要吃透题目中的条件与要求,更要挖掘题目中的隐含条件。之后再去着手 做题。 2. 培养做题习惯:要想学好数学,多做题目是难免的,熟练掌握各种题型的解题思路。刚 开始从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题, 以帮助开拓思路。,提高自己的分析、解决问题能力,掌握一般的解题规律。对于一些易错题,可备错题集,写出自己的解题思路和正确的解题过程,两者一起比较。找出自己的错误所在。以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳学习状态。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题随便粗心大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯和严谨的解题作风是非常重要的。 3. 培养课外整理习惯:教学中发现,做题较好的学生有个相似的习惯:不仅都有个习题整 理的本子,并且都视这个本子为宝。这里包括习题整理、习题分类、方法总结。题量诚可贵,整理效更高。主动整理并且经过反复体会的整理,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识系统。 三.引导学生会考试: 时下中国教育是一个应试教育向素质教育过度的阶段,对于学生来说,就是“分分学生的命根”。所有的考核到了老师、父母眼里都是成绩。如果成绩不好,意味着丧失了很多,甚至是一切。不可否认,在当今如果不好,就意味着没有学校上,不容易成功。一个好的大学就有更好的就业机会。正是这样,老师、家长甚至孩子也都越来越看重成绩,只有好的成绩才有好的出路。如何在考场上发挥自己的水平,甚至是超常发挥。其实考试也是一种技巧。孰不知很多人掌握的点并不比别人多,认真程度也一样,可就是成绩比他人高。这不是他聪明,而是他了解考试技巧。掌握考试技巧要做到以下两点: 1. 良好的心态对待考试:考前要练一练常规题目,把自己的思路展开,切忌考前不顾 正确率,盲目提高解题速度。对于一些容易的基础题要有十分把握,因为每次考试题目中大部分是基础题。而对于那些难题及综合性较强的题目,要认真思考,尽量让自己理出头绪,分析思路,理清先后顺序,有条理地写出步骤,做完题后要总结归纳,也就是做出答案。调整自己的心态,使自己任何时候都保持镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己:除了自己,谁也不能把我打倒。自己不跨,谁也不能打垮我。 2. 培养学生处理“会做”与“得分”的关系:要将解题思路转化为得分点,主要体现 在准确、完整的推理和精确严密的计算,要克服卷面上大量出现“会而不对”“对而不全”的情况。而这些就要重视解题过程的严密推理和精确计算——也就是过程的书写。特别是广大可爱的男同学们,用心书写过程,改变自己的“重思路,轻步骤,不计算”的不良学习习惯。切忌会做的得不全分,而不会做的全不得分。良好的答题艺术要在平时培养,从每次小测验中总结经验教训。从而在大型考试中超常 发挥自己的水平。 不要因为一时的学习困难而放弃,要坚信:度过一时的难关,会柳岸花明的。度过八年级的“艰苦”阶段,你一定可以迈进数学知识的殿堂。前途一定是光明的。
初二数学
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。 初二下册数学知识点归纳 第一章一元一次不等式和一元一次不等式组 一、不等关系 1、一般地,用符号"《"(或"≤"),"》"(或"≥")连接的式子叫做不等式. 2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系. 3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语. 非负数《===》大于等于0(≥0)《===》0和正数《===》不小于0 非正数《===》小于等于0(≤0)《===》0和负数《===》不大于0 二、不等式的基本性质 1、掌握不等式的基本性质,并会灵活运用: (1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a》b,那么a+c》b+c,a-c》b-c. (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a》b,并且c》0,那么ac》bc,. (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a》b,并且c《0,那么ac 2、比较大小:(a、b分别表示两个实数或整式) 一般地: 如果a》b,那么a-b是正数;反过来,如果a-b是正数,那么a》b; 如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b; 如果a 即: a》b《===》a-b》0 a=b《===》a-b=0 aa-b《0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三、不等式的解集: 1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式. 2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. 3、不等式的解集在数轴上的表示: 用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 八年级 上册期末数学复习资料 第一章勾股定理 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。 2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。 3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。 第二章实数 1.平方根和算术平方根的概念及其性质: (1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。 (2)性质:①当≥0时,≥0;当《0时,无意义;②=;③。 2.立方根的概念及其性质: (1)概念:若,那么是的立方根,记作:; (2)性质:①;②;③= 3.实数的概念及其分类: (1)概念:实数是有理数和无理数的统称; (2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。 4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。 5.算术平方根的运算律:(≥0,≥0);(≥0,》0)。 第三章图形的平移与旋转 1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。 2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。 3.作平移图与旋转图。 八年级数学 学习方法技巧 自学能力的培养是深化学习的必由之路 在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。 我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。 自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。 因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。 学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。 自信才能自强 在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。 具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。 数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。 解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。 初二数学知识点归纳整理相关 文章 : ★ 初二数学知识点复习整理 ★ 初二数学知识点归纳 ★ 初二数学知识点归纳上册人教版 ★ 八年级数学知识点整理归纳 ★ 八年级下册数学知识点整理 ★ 初二数学上册知识点总结 ★ 初二数学知识点整理 ★ 初二数学重点知识归纳整理 ★ 初二数学知识点归纳总结 ★ 初二数学知识点整理归纳
2022八年级数学下学期教学工作总结
时间如流水,下学期的 教育 教学工作已经结束。留给我们的是新的思考和更大的努力。这次我给大家整理了2022 八年级 数学下学期 教学 工作 总结 ,供大家阅读参考,希望大家喜欢。
2022八年级数学下学期教学工作总结1
本学年主要担任了初二124班的数学教学工作,经过一年的努力,取得了一些成绩,也还存在些问题,现将本学年的工作总结如下:
一、教学工作
进一步深入钻研教学大纲和教材,认真学习和研究教学改革,认真分析学生的学习状况,改变教学的方式、 方法 ,坚持实施素质教育为根本点,重视基础知识的传授,认真完成教学内容。同时,积极训练学生的各种数学技能。坚持理论联系实际。
二、教学的实践操作
1、扣紧数学学科的特点,采用不同形式的 教学方法 ,激发学生的学习兴趣。数学科的特点:
(1)与日常生活、生产联系紧密;
(2)思维能力、空间观念强、针对这些特点,在教学过程中,要使学生适应日常生活,参加生产和进一步学习所必要的几何基础知识与基本技能,进一步培养运算能力,思维能力和空间观念,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识,良好个性、品质以及初步的辩证唯物主义观点,同时,在教学过程采用多媒体教学鼓励学生自己设计课件,激发学生的学习兴趣及培养他们实践能力。
2、狠抓课堂教学质量:
课堂教学工作的中心环节,课堂教学的质量,是教学的质量,是教学的生命线,为提高课堂的教学质量,在教学实践中试行了如下一些方法:
(1)抓好旧知识的总结过关,做好新知识与旧知识的函接。
(2)分化教学难点,以探讨、实践等方法解决教学重点、难点。
(3)查阅或穿插有关学习资料,做好知识的补充和学习延伸。
三、优化教学语言、运用多媒体组合。
语言教学是一种最基础最广泛的教学手段,教师要激发学生的学习兴趣,应在教学语言上好好下一番功夫,优化的教学语言是可以引趣、传导、释疑的。教学语言的优化最根本可以从教学内容入手。如何把课文书面语言转化为教学语言,并使之化,是需要长期的探索和积累。我们可以在教学中运用导言引趣,重点、难点的设疑或巧释,知识的类化,典型事例的引入,情境的宣染等方面探索化的教学语言,做到教学内容的意随心生,情境交融的良好效果。
教学媒体的使用是教学过程的一个重要手段,根据教材内容,选取多媒体组合,有利于提高教学效率,促进教学质量的提高。在教学实践中,我们选取身边材料,自制教具,制作投影、录像、录音、图表等,创造和运用多媒体组合教学,提高了教学质量。
四、通过该学期的实践教学,进一步培养了学生对数学的学习兴趣。
在完成教学内容的过程中,教学内容的传播效果良好,并培养了学生具有一定的实践能力和良好的思维习惯,以及培养了学生具有一定的探索能力。
今后仍需不断改进教学方法,积累 经验 ,培养和发展学生获取数学知识的良好素质。
2022八年级数学下学期教学工作总结2
时间如流水,一学期的教育教学工作已经结束。留给我们的是新的思考和更大的努力。掩卷长思,细细品味,这一学期里教学工作中的点点滴滴不禁又浮上心头来,使我感慨万千,这其中有苦有乐,有辛酸也有喜悦,失败与成功并存。在我任初二(1)、(2)班数学教学工作的这一学期里,我自己是过得紧张又忙碌,愉快而充实的。现在,我把自己在这一学年教学工作中的体会与得失写出来,认真思索,力求在以后的教育教学工作中取得更大的成绩和进步。
初二(1)班共有学生56人,男生27人,女生29人;初二(2)班共有50人;学生的数学基础和空间思维能力普遍较差,大部分学生的解题能力十分弱,特别是几何题目,很大一部分学生做起来都很吃力。尤其是二(2)班,差生面广是这个班数学学科的一个现实状况。面对学生素质的参差不齐,作为教师的我,费尽心思,想方设法从各方面努力提高教学水平和教学质量。
一、政治思想方面:
认真学习新的教育理论,及时更新教育理念。新的教育形式要求我们必须具有先进的教育观念,才能适应教育的发展。所以我不但注重集体的政治理论学习,还注意从书本中汲取营养,认真学习仔细体会新形势下怎样做一名好教师。
二、教育教学方面:
要提高教学质量,关键是上好课。为了上好课,我做了下面的工作:
1、课前准备:备好课。
每一次备课都很认真,遇到问题时立即提出,与 其它 同课头老师讨论,综合考虑各种方案。多发表自己的见解与大家讨论,如有问题立即更正、改进。
2、多听课,学习和吸取其他教师的教学方法。教学水平的提高在于努力学习、积累经验,不在于教学时间的长短。听课的同时,认真做好记录,哪些地方是自己不具备的,哪些地方可以怎样讲可能有更好的效果等等。务求每听一节课都要有的收获。
3、钻研教材,认真备课。教材是教学的依据,同时也是学生学习的主要参考书,我们在熟悉教材的基础上讲授本课程的内容,学生学习才会有依据,学生在课堂上跟不上老师时可以参考教材重新整理思路,跟上老师的思路,所以应该重视教材的钻研。在备课过程中,寻求让学生更容易接受的教法。
4、了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防 措施 。
5、考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
6、课堂上的情况。
组织好课堂教学,关注全体学生,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病。课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好课外作业,作业少而精,减轻学生的负担。
7、要提高教学质量,还要做好课后辅导工作,初二学生爱动、好玩,难管,常常不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,多做思想工作,从生活上关心他。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重。
8、热爱学生,平等的对待每一个学生,让他们都感受到老师的关心,良好的师生关系促进了学生的学习。
三、取得的成绩
在本学期的工作中,我取得了一定的成绩,从本学期的考成绩来看,我所任教的初二(1)班无论从平均分、及格人数和优生人数都在同年级中名列前茅。初二(2)班由于学生基础差, 学习态度 不端正等多方面的原因,成绩处于中等水平。
四、存在的不足
"金无足赤,人无完人",在教学工作中难免有缺陷,例如,课堂语言平缓,沉闷,激情不高;对学生兴趣的培养不足;课堂语言不够生动;考试成绩不稳定对开放性灵活性题目训练、引导不够等,这些是我目前在我教学中存在的不足。
五、改进措施:
1、多与学生沟通,了解学生掌握知识的情况,这样有利于针对性的对学生进行教育,无论备课多认真仔细也很难适应不同班级的情况,只有沟通、了解,才能更好地解决各个班级的不同问题。另外,有些学生基础较好,加强师生间的沟通就能更好地引导这些学生更好地学习。
2、注重组织教学,严格要求学生。大部分学生的学习基础较差,所谓“冰冻三尺,非一日之寒”。这些学生已经形成了厌学的习惯,顶多是完成老师布置的作业就算了,有些甚至是抄袭的,对于容易掌握的内容他们也不加思考,所以必须严格要求他们。由于学生缺乏学习自觉性,所以上课时间是他们学习的主要时间,教师应善于组织、调动学生进行学习,更充分地利用好上课时间。
3、注重打基础。由于学生基础较差,上课时多以学过内容作为切入点,让学生更易接受,从熟悉的内容转到新内容的学习,做到过渡自然。对于学过的内容也可能没有完全掌握,则可以花时间较完整地复习学过内容,然后才学习新知识。作业的布置也以基础题为主,对稍难的题目可以在堂上讲解,让学生整理成作业。
4、运用多种技巧教学。对于大部分的数学题,学生都不知如何入手去解,他们在小学时没有形成解题的思维习惯,为了让学生更好地解题,在以后的教学工作中应把解题的方法进行总结,分为几个简单的解题步骤一步步地解题。多找资料,在上课前讲一段相关的 典故 或趣事吸引学生注意力,引发他们的兴趣,这些都是有效的技巧,使学生对本课程产生兴趣,“兴趣是的老师”!
走进21世纪,社会对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为四中美好的明天奉献自己的力量。
2022八年级数学下学期教学工作总结3
一、加强师德修养,提高道德素质
过去的一个学期中,我认真加强师德修养,提高道德素质。认真学习教育法律法规,严格按照有事业心、有责任心、有上进心、爱校、爱岗、爱生、团结协作、乐于奉献、勇于探索、积极进取的要求去规范自己的行为。对待学生做到:民主平等,公正合理,严格要求,耐心教导;对待同事做到:团结协作、互相尊重、友好相处;对待家长做到:主动协调,积极沟通;对待自己做到:严于律已、以身作则、为人师表。
二、加强教育教学理论学习
本学期我但任八年级数学的教学。我能积极投入到课改的实践探索中,认真学习、贯彻新课标,加快教育、教学方法的研究,更新教育观念,掌握教学改革的方式方法,提高了驾驭课程的能力。树立了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的新型师生关系,使尊重学生人格,尊重学生观点。
三、教学工作
在教学中,我大胆探索适合于学生发展的教学方法。为了教学质量,我做了下面的工作:
1、认真学习课标。
通过学习新的《课程标准》,使自己逐步领会到“一切为了人的发展”的教学理念。承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果.
2、认真备好课。
①认真学习贯彻新课标,钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。
②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。
③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教学、如何安排每节课的活动。
3、坚持坚持学生为主体,向45分钟课堂教学要质量。
精心组织好课堂教学,关注全体学生,坚持学生为主体,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,针对初二年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,注重讲练结合。在教学中注意抓住重点,突破难点。首先加强对学生学法的指导,引导学生学会学习。提高学生自学能力;给学生提供合作学习的氛围,在学生自学的基础上,组成4人的学习小组,使学生在合作学习的氛围中,提高发现错误和纠正错误的能力;为学生提供机会,培养他们的创新能力。其次加强教法研究,提高教学质量。我在教学中着重采取了问题--讨论式教学法,通过以下几个环节进行操作:指导读书方法,培养问题意识;创设探究环境,全员质凝研讨;补充遗缺遗漏,归纳知识要点。
4、认真批改作业。
在作业批改上,做到认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在讲评作业时做到有的放矢,使学生能及时认识并纠正作业中的错误。
四、今后努力的方向
1、加强学习,学习新课标下新的教学思想。
2、学习新课标,挖掘教材,进一步把握知识点和考点。
3、多听课,学习同科目教师先进的教学方法的教学理念。
4、加强转差培优力度。
5、让学生具有良好的数学思维
2022八年级数学下学期教学工作总结4
本学期我担任八年级(9)班数学教学工作。通过一个学期的教学,已经圆满完成了教学任务,一学期以来,我遵纪守法,积极参加政治和业务学习,提高自己的理论水平和实践能力,在教学过程中,我从各方面严格要求自己,努力钻研教材,探索教法,积极向有经验的教师请教,根据学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。为使今后的工作取得更大的进步,现对本学期教学工作作出如下总结:
一、主要工作及取得的成绩:
1、严谨备好每一节课。
人常说:功在课前,因此我在上课前认真备课,钻研了《数学课程标准》、教材、教参,对学期教学内容做到心中有数,不但备学生而且备教材备教法。
学期中,着重进行单元备课,掌握每一部分知识在单元中、在整册书中的地位、作用,思考学生怎样学,学生将会产生什么疑难,该怎样解决,在备课本中体现教师的引导,学生的主动学习过程,充分理解课后习题的作用,设计好练习。
2、把好上课关,提高课堂教学效率、质量。新课标的数学课通常采用“问题情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。
所以在课堂上我想方设法创设能吸引学生注意的情境。在这一学期,我根据教学内容的实际创设情境,让学生一上课就感兴趣,每节课都有新鲜感。
3、虚心请教同组老师。在教学上,有疑必问。由于没有新课标教学经验,所以我的教学进度总是落在其他老师之后。我虚心向他们请教每节课的好做法和需要注意什么问题,结合他们的意见和自己的思考结果,总结出每课教学的经验和巧妙的方法。本学期我将自己在备课中想到的好点子以及遇到的问题整理成“教学 反思 录”。
4、多听课、讲公开课。在听和讲的过程中,可以学到很多很多适合自己的东西,也可以暴露一些自己平时感觉不到的问题,这是我到实验中学来后最深的体会。使我对以后的教学更加充满了信心。
5、作业及时批改,对于作业存在的问题及时纠正。课后作业是不可缺的一部分是反馈当天所学内容的方法,因此作业必须勤批改并做到有错必改的好习惯。
二、存在问题和今后努力方向:
1、新课标学习与钻研还要加强;
2、课堂教学设计、研究、效果方面还要考虑;
3、多媒体技术在课堂教学中的使用还有待提高;
4、“培优、辅中、稳差”的方法方式还有待完善。
2022八年级数学下学期教学工作总结5
转眼间初二下学期的工作就结束了。本学期我担任初二(7)(8)班的数学教学工作,在全体备课组老师的努力进取、团结协作下,我们的教学能力得到了一定的提高。
首先,我认真阅读新课标,钻研新教材,熟悉教材内容,查阅教学资料,适当增减教学内容,认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。另外,我还积极阅读教学教参书籍及教学论文,如《中学数学教学参考》等,认真学习各种教学方法,并尝试运用到实践教学中去。
其次,我积极参加各种教研活动,如集体备课,校内外听课,教学教研会议。努力提高课堂教学的操作调控能力,语言表达能力,运用多种教学器材,为了节省时间和增加课堂容量,我经常使用投影仪、多媒体。课下,根据自己的理解,选题、出检测试卷,这样也提高了我对教材重难点的理解。积极安排时间做好学生的辅导工作,学生有问题及时解决。坚持了一个学期,我感觉收获颇多。
备课组的精诚合作是取得成绩的关键。我们的备课组的新老师占了大多数,有的刚刚走上工作岗位,教学经验不足,这更需要发挥集体的力量。集体备课使我们对教材的认识达到统一,理解更深刻,时间安排一致。除了规定的时间集体备课外,我们还经常在一起讨论,解决问题。其次,统一测试、统一复习资料。平时,备课组安排老师出单元资料、检测题,然后统一使用。在期末复习阶段,组长安排每个老师负责出各章节的复习资料、复习题,资料共享。所以,最后的`成绩是我们备课组全体老师共同努力的结果。
以上是我工作的一个总结和体会,当然,有些可能是肤浅的,有些是大家平常都知道的。在我工作中,也有很多没能达到预期的效果,但我始终相信一分耕耘,总会有一分收获,所以我也将会继续努力,力争做的更好。
2022八年级数学下学期教学工作总结相关 文章 :
★ 八年级数学教师下学期工作总结2020
★ 八年级数学下册教学工作总结
★ 2020年八年级数学教学工作总结五篇
★ 八年级数学教师下学期工作总结2019
★ 八年级数学教师工作总结精选2020精选5篇
★ 八年级第二学期数学教学工作总结精选
★ 最新2020八年级第一学期数学教学工作总结
★ 八年级数学第二学期教学工作总结
★ 2019初二下学期数学教师工作总结
★ 2020八年级数学教师工作总结精选范文最新5篇
《探索三角形全等的条件》说课稿
作为一名为他人授业解惑的教育工作者,时常要开展说课稿准备工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面是我为大家整理的《探索三角形全等的条件》优秀说课稿,仅供参考,希望能够帮助到大家。
《探索三角形全等的条件》说课稿1
一、说教材
全等三角形是八年级上册人教版数学教材第十一章的教学内容。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
根据课程标准,确定本节课的目标为:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
二、说教法
本节课以学生练习为主,教室归纳总结为辅的教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。
1、教学生观察、归纳的方法
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
2、通过设疑,启发学生思考
根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。
三、说学法
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
四、说教学流程
本节课的教学过程是:首先,展示教师制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的.位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,让学生阐述全等三角形的性质和判定。并通过练习来理解全等三角形的性质和判定,并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质和判定解决一些简单的实际问题。
《探索三角形全等的条件》说课稿2
一.说教材
全等三角形是八年级上册数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,也是进一步学习其它图形的基础之一。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:
(一)、教学目标:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,培养学生热爱科学、勇于创新的精神和多方位审视问题的能力与技巧。
(二)、说教学重点、难点
重点:全等三角形的概念、性质
难点:找对应顶点、对应边和对应角
二、说教法
1、引导发现法
在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。
2、谈话法
在师生对话、问答的过程中,用谈话的方式引导学生积极思考、探索,从而使学生在师生之间的交流、同学之间的交流中获得知识。
三、说学法
1、通过接触身边环境中的数学信息,激发学生的学习兴趣,产生自觉学习的内在动机,引导学生踏上自主学习之路。
2、看听结合,形成表象。
3、手脑结合,自主探究。
四、教学流程设计
1、情景导入
课前展示背景为悉尼歌剧院的倒影的图片(目的引起学生们的兴趣:全等三角形和歌剧院有什么联系?)
展示我国某地一幅风景图片,通过学生对湖光山色的描绘(描绘的倒影是景致之一),使学生的思维很快处于兴奋状态,这样,引导学生积极思维,让学生们认识到全等图形就在我们身边,以利于培养学生的探索性思维能力,激发学生的求知欲。
2、探求新知
展示国旗和福娃的等图片,提出问题(同时使学生感知,我们的祖国在体育、经济等诸多方面都已跻身与世界强国之列,为自己是一个中国人而感到自豪、骄傲)
3、通过观察图形变换让学生感受完全重合的图形有很多,从而得出全等形的概念。
4、通过演示让学生体会出全等三角形的概念和对应顶点、对应边、对应角的概念以及全等三角形的性质,并以图形变换的形式在练习指出对应顶点、对应边、对应角,由此去理解“对应顶点写在对应的位置上”的含义。
5、通过学生对全等三角形的观察,合作交流,从而得出找全等三角形的对应边、对应角的方法。
6、小结提高
通过今天的学习,同学们有哪些收获?(由学生自我完成知识的体系,纳入已有的知识体系,逐步形成解决问题的技能和思想)
7、拓展与延伸(合作交流完成探究题)
八年级数学必备知识点总结
没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四 总结 ”
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
八年级上册数学知识点
(一)运用公式法
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
八年级数学重要知识点
【概率初步】
23.1确定事件和随机事件
1.在一定条件下必定出现的现象叫做必然事件
2.在一定条件下必定不出现的现象叫做不可能事件
3.必然事件和不可能事件统称为确定事件
4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性
23.3时间的概率
1.用来表示某事件发生的可能性大小的数叫做这个事件的概率
2.规定用0作为不可能事件的概率;用1作为必然时间的概率
3.事件A的概率我们记作P(A);对于随机事件A,可知0
4.如果一项可以反复进行的试验具有以下特点:
(1)试验的结果是有限个,各种结果可能出现的机会是均等的;
(2)任何两个结果不可能同时出现
那么这样的试验叫做等可能试验
5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n
6.列举法、树状图、列表
23.4概率计算举例
八年级数学必备知识点总结相关 文章 :
★ 八年级数学知识点整理归纳
★ 人教版八年级数学上册知识点总结
★ 初二数学知识点归纳整理
★ 八年级下册数学知识点整理
★ 初中八年级数学知识点总结
★ 初二数学知识点归纳梳理
★ 初二数学基础知识点归纳
★ 初二数学上册知识点总结
★ 初二数学知识点整理归纳
★ 初二数学知识点整理
华师大版八年级上册数学课件
老师要以学生为主体,考虑到概念课的特殊性,呈现教师引导、学生表达,教师归纳。下面是我为大家整理的华师大版八年级上册数学课件,希望能够帮助到你们。
华师大版八年级上册数学课件
1。平方根
【教学目标】
知识与技能
了解一个数的平方根、算术平方根及开平方的意义,会用根号表示一个数的平方根、算术平方根。能用计算器求一个数的平方根。
过程与方法
了解开方与乘方是互逆运算,会利用这个互逆运算关系求某些非负数的算术平方根。
情感、态度与价值观
通过学习,体验数学知识来源于实践,是由于生活或生产的需要而产生、发展的。
【重点难点】
重点
平方根、算术平方根的概念。
难点
有关平方根、算术平方根的运算的区别与联系。
【教学过程】
一、创设情景,导入新课
同学们,2013年6月17时38分神十成功发射,其飞行速度大于第一宇宙速度V,而小于第二宇宙速度v2,v1,v2,满足v12=gR,v22=2gR,要求v1与v2就要用列平方根的概念。
多媒体展示教科书导图提出的问题,( )2=25。
二、师生互动,探究新知
1。用平方运算求平方根
【教师活动】
自学课本P2到例1止,什么是平方根?我们是根据什么求25的平方根的?
【学生活动】
小组交流讨论后,代表发言。
【教师活动】
教师板书平方根概念并强调:弄清楚“谁”是“谁”的平方根,且正数有两个平方根,它们互为相反数,负数没有平方根。在此基础上完成例1,并注意学生利用平方运算求一个数平方根时语言的规范性。
2。算术平方根
【教师活动】
正数a的正的平方根叫做a的算术平方根,记作a,正数a的平方根记作±a,0的平方根是0,0的算术平方根是0。
【学生活动】
完成例2。
【教师活动】
教师强调用平方运算求平方根,并用数学符号± 表示平方根,用 表示算术平方根。
3。利用计算器求算术平方根
【学生活动】
用计算器操作。
【教师活动】
教师强调:正确的操作程序与精确度。
三、随堂练习,巩固新知
1。求下列各式的值:
(1)1。96;(2)—49;(3)±5116;(4)(—15)2。
【答案】
(1)1。96表示1。96的算术平方根,∵1。42=1。96,∴1。96=1。4。
(2)—49表示49的算术平方根的相反数,∵72=49,∴—49=—7。
(3)±5116表示5116的平方根,∵5116=8116,(±94)2=8116,∴±5116=±8116=±94。
(4)(—15)2表示(—15)2=225的算术平方根,∵152=225,∴(—15)2=15。
2。求下列各数的算术平方根:
(1)1144;(2)(—100)2;(3)(±25)2。
【答案】
(1)∵(112)2=1144,∴1144的算术平方根是112,即1144=112。
(2)∵(—100)2=1002,∴(—100)2的算术平方根是100,即(—100)2=100。
(3)∵±25表示25的平方根,(±5)2=25,
∴25的平方根是±5。∴(±25)2=(±5)2=25,
∵52=25,∵(±25)2=(±5)2=25。
∵52=25,∴(±25)2的算术平方根是5,
即(±25)2=5。
四、典例精析,拓展新知
【例1】
三角形的三边长为a、b、c且a—2+|b—3|=0,c为偶数,求△ABC的周长。
【分析】
a—2表示a—2的算术平方根,故a—2≥0,即a—2≥0,而|b—3|≥0,利用非负数和为0,则分别为0,求出a、b,再由三边关系求解。
【答案】
△ABC的周长为7或9。
a表示a的算术平方根,具有双重非负性,非负数和为0,则各非负数为0。
六、师生互动,课堂小结
这节课你学到了什么?有何收获?有何困惑?并与同伴交流,在学生交流发言的基础上教师归纳总结。
1。平方根、算术平方根的概念、表示方法和读法。
2。(1)正数的平方根有两个,它们互为相反数;
(2)0的平方根只有一个,为0;
(3)负数没有平方根。
3。0既是0的平方根,也是0的算术平方根。
4。开平方的概念。
【教学反思】
本节课概念较多,从神十飞天入手导入新课,抓住了学生。从正方形的面积为25,求它的边长,进行平方根与算术平方根的教学。整堂课师生互动,以学生为主体,考虑到概念课的特殊性,呈现教师引导、学生表达,教师归纳、学生理解模式。
求平方根时,利用平方运算,并适时进行用± 或 表示平方根或算术平方根。典例精析对a的双重非负性,学困生可能有困难,教师给予适当的关注。
八年级上册数学分式课件
分式是指有除法运算,而且除数中含有未知数的有理式。下面是我推荐给大家的八年级上册数学分式课件,希望大家有所收获。
教学任务分析
教材的地位和作用
本节课是北师大版八年级下册第五章第一节《分式》第一课时。分式是初中数学中继整式之后学习的一个代数基础知识,是对小学所学分数的延伸和扩展,是建立在本册第四章的分解因式的基础上学习的,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础
结合学生情况教学目标设计
由于学生在七年级已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。
学生对分数和整式的理解、掌握不熟练,给本节分式的学习带来了困难,因为其性质与运算是完全类似的,对这种状况,要以基础知识的回忆和探究新知同步进行,在此基础上有所提高,让不同层次的学生都有收获。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下4个方面为本节课的教学目标:
1.知识与技能目标
⑴使学生了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.明确分母不得为零是分式概念的组成部分.
⑵掌握分式有意义的条件.认识事物间的联系与制约关系.
2.过程与方法目标
⑴能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感,
⑵通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.
⑶培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.
3.情感与价值目标
⑴.通过体验动手操作、合作交流、探究解决的学习过程,获得成功的经验,体验数学活动充满 着探索和创造,体会分式的模型思想,激发学生解决问题的积极性和主动性。
⑵在土地沙化问题中,体会保护人类生存环境的重要性。培养学生严谨的思维能力.
4.现代教学手段
多媒体 幻灯 投影
①课堂使用课件教学,直观、教学知识点覆盖全面,教学内容丰富。
②幻灯、投影的使用,学生习题情况迅速展示于课堂,有利于老师理想处理本节学生存在的问题。达到课堂效果。
学习重点
分式的概念与意义(即了解分式的形式 (A、B是整式,并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.
设计意图:分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。
学习难点:理解和掌握分式有无意义、分式值为零时的条件
设计意图:由于分式的分母中含有字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。
教学准备
①熟悉教材,明确教学目标②备学生,清楚他们对于分数、整式基础知识欠缺。③借鉴本届教学设计、课件,完善自己本节的课件内容。课件体现以学生为主题教学思想,大部分学生多动手才会掌握,课堂做到精讲多练,给学生练习、交流多留时间。最后选典型题目,检测本节效果,应该理想。
教学方法:分组讨论,鼓励法,类比,引导,分析
教学过程设计
本节课由六个教学环节组成,它们是①自主探究:适时点题 ②分析概念,落实双基 ③动手操作、探索新知: ④快乐课堂、思维晋级⑤大显身手 自我检测⑥师生归纳、总结⑦作业。
其具体内容与分析如下:
教学过程(一自主探究:
自主完成课本P109练习题后写下你的疑惑
1. 情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成原计划任务。
如果设原计划每月固沙造林x公顷?那么
(1原计划完成造林任务需要多少个月?
(2实际完成造林任务用了多少个月?
2、解读探究
认真观察上面问题中出现的代数式,它们有什么共同特征?
目的:⑴以素质教育,高效课堂为指导思想,学生先自己学习力所能及的部分,老师根据学生的实际情况指点教学。
⑵对数学来源于生活,建模思想有潜移默化作用。
教学预设:数学基础较好同学难度不大。
(二分析概念、落实双基
1.分式的概念
(1由学生分组讨论分式的定义,得到分式概念的结论:
(2由学生举几个分式的例子
一般地,用A、B表示两个整式,A÷B可以表示成 的形式。如果B中含有字母,那么称 为分式.其中A叫做分式的分子,B为分式的分母.
(3学生小结分式的概念中应注意的问题.
①分母中含有字母.
②如同分数一样,分式的分母不能为零.
小试牛刀:下列各式中,哪些是整式?哪些是分式?
海阔凭鱼跃:
你能用下面的整式构造分式吗?
-3,-a, ab-b,
目的:对于分式概念进行巩固,为以后的学习打基础。
教学预设:这个题目灵活性较大,给学生思维以足够的空间,对于概念的掌握有很好的检测作用。
2.分式有无意义,值为零。
思考:⑴分式的分母有什么条件限制?
当B=0时, 分式 无意义.
当B≠0时,分式 有意义.
⑵当 =0时,分子、分母满足什么条件?
当A=0而B≠0时,分式 的值为零.
目的:分式有无意义的条件,值为零易混,师引导学生得正确结论,为重难点突破打基础。
教学预设:难度不大,应有板书,条理化。
(三动手操作、探索新知: 、
例1 ⑴当a=1,2,-1时,求分式 的值;
⑵ 当a取何值时,分式 有意义?
解:(1当a=1时, 当
a=2时
(2当分母的值等于零时,分式没有意义,除此以外,分式都有意义。
由分母2a-1=0,得a= ,所以,当a取 以外的任何实数时,分式 有意义。
目的:经历分式求值,感知符号的意义,为以后的学习打基础。学习分式有意义数学情况。
教学预设:(1中分式求值,学生可以自学;(2题目老师稍做提示,即可掌握。
问题解决:当x取何值时,下列分式有意义?
解:(1由分母4x+1=0,得x=- .
所以,当a取- 以外的任何实数时,分式 有意义。
(2由分母x2+1=0,得x2=-1
所以,当a取任何实数时,分式 有意义。
目的:对于分式有意义进行巩固提高。
教学预设:(1学生仿例1可以自己做;(2学生做到x2=-1,任意实数可能答不出来,老师这事予以讲解。
思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做?
例2: 当x取何值时,下列分式的值为零?
解:(1由分子x-1=0得x=1
而当x=1时,分母x2+2x-3≠0.
∴当x=1时,原分式值为零.
目的:(1分式值为零与有无意义题目学生易混淆,这个题目对分式值为零思路指导很理想。(2对分式值为零进行巩固掌握。
教学预设:(1学生对此题步骤模糊,老师讲解再总结分式值为零条件及做题步骤较理想。(2学生自己做并交流
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.
(四快乐课堂 、思维晋级:
x为何值时,分式
⑴有意义 ⑵ 0 ⑶ 负数 ⑷正数
目的:①对本节课重难点有巩固作用
②正数与负数对于分式值有更全面的了解。
教学预设:⑴⑵小题难度不大,⑶小题大部分学生应予以提示,⑷学生自己做,没有问题。
(五大显身手 自我检测
1.当——时,分式 有意义?
2.判断下列代数式 分式有——个。
3.当x_____时,分式 =0
4、下列正确
A.分式的分子中一定含字母。
B.当分母为零时,分式无意义。
C.当分母为零时,分式值为零。
目的:1.高效课堂,课堂知识点大部分要求掌握。
2.对本节上课效果进行检测,及时查漏补缺。
教学预设:这几个题目难度一般,知识点覆盖较全面,能达到检测作用,效果应该理想。
(六 师生归纳总结:
本节课你学到了哪些知识和方法?
1.分式与分数的区别.
2.分式何时有意义?
3.分式何时值为零?
设计意图:师生交流,让学生畅所欲言,大胆谈自己的收获和感想,充分发挥学生的主体地位,从学习知识、方法、和延伸三方面进行归纳,培养及时归纳知识的习惯和提炼归纳的能力。
人教版八年级上册数学课件
形象有趣的课件,使得课堂不再枯燥无味。虽然在课堂教学中起主导作用的是教师,课件只是起辅助教学的作用,但并不代表可以轻视,制作课件需要注意的问题。下面我为大家带来人教版八年级上册数学课件,仅供参考,希望能够帮到大家。
人教版八年级上册数学课件
第一课时 综合复习
一、知识结构
二、重要知识与规律总结
(一)概念
1、分式: (A、B为整式,B≠0)
2、最简公分母:各分母所有因式的最高次幂的积。
3、分式方程:分母中含有未知数的方程。
(二)性质
1、分式基本性质: (M是不等于零的整式)
2、幂的性质:
零指数幂: =1(a ≠0)
负整指数幂: (a≠0,n为正整数)
科学记数法:a × ,1≤| a |《10,n是一个整数。
(三)分式运算法则
分式乘法:将分子、分母分别相乘,即
分式除法:将除式的分子、分母颠倒位置后,与被除式相乘,即
分式的加减:(1)同分母分式相加减: ;
(2)异分母分式相加减:
分式乘方: (b≠0) 分式开方: (a≥0,b》0)
(四)分式方程解法
1、解题思想:分式方程转化为整式方程。
2、转化方法:去分母(特殊的用换元法)。
3、转化关键:正确找出最简公分母。
4、注意点:注意验根。
三、学习方法点拨
1、两个整数不能整除时,出现了分数;类似地,两个分式不能整除时,就出现了分式。因此,整式的除法是引入分式概念的基础。
2、分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数的情形进行类比,以加深对新知识的理解。
3、解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验。学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验。
4、由于引进了零指数幂和负整指数幂,绝对值较小的数也可以用科学记数法来表示。
四、布置作业:课本第16章复习题。
第二课时 专题讲解
一、分式运算中的常用技巧
分式的运算以分式的概念、分式的基本性质、运算法则为基础,其中分式的加减运算是难点,解决这一难点的关键是根据题目的特点恰当的通分,并以整式变形、因式分解为工具进行计算。分式运算既突出了代数式的运算、变换的基础知识和基本技能,又注重了数学的思想方法,在历年考试中是必考的重点内容之一,若能根据特点灵活选择解法,将会收到事半功倍的效果。
1、约分求值:分母或分子是多项式时,先把分子、分母因式分解后约分求值。
计算:
解:原式=
2、分步通分,逐步计算:以下题的解法加以说明,该题采用“分步通分法”,先将前两个分式通分,所得结果再与后面的分式通分,达到化繁为简。若一次性全面通分,计算量将非常大。我们在解题时既要看到局部特征,又要有全面考虑。
计算:
解:原式=
3、合理搭配,分组通分:分组通分,可以降低难度,见下题。
已知x=1+ ,那么 =________________。
解析:先将第一、三项通分,然后再与第二项计算,最后代入求值。
二、分式求值中的常用技巧
分式求值在中考中出现频率较高且方法灵活,有时出现条件或所求代数式不易化简变形,当把代数式的分子、分母颠倒后,变形就容易了,这样的问题通常采用倒数法(把分子、分母倒过来)求值,见例1。
例1、已知 ,求 的值。
解:∵ ,∴x≠0,∴ ,即 。
∴ ,∴ = 。
2、活用公式变形求值:若能对公式进行熟练地变形运用,可给解题带来极大方便,见例2。
例2、已知x2-5x+1=0,求 的值。
解:由x2-5x+1=0,知x≠0,由此得 。
∴
3、设k求值法(也可叫参数法):当已知条件以连等式出现时,可用设k法解题较简便,见例3。
例3、已知: ,求 的值。
解:设 =k,∴b+c=ak,c+a=bk,a+b=ck。
∴b+c+c+a+a+b=ak+bk+ck,
∴2(a+b+c)= k (a+b+c),(a+b+c)(2-k) =0
即k=2或a+b+c=0,代入到 =k中。
∴原式= 。即原式= 或原式=-1。
4、整体代换法:在计算代数式求值问题时,有时可采用整体代入法——即将条件等式(或变形后的条件式)整体代入求值,见例4、例5。
例4、已知 , , ,求 的值。
解:∵ , , ,
∴ ,∴ = 。
∴ 。
例5、已知a+b=-8,ab=6,化简 _________________。
解:∵a+b=-8,ab=6,∴a《0且b《0。
∴原式=
三、布置作业
课本第15章复习题。
更多文章:
2020抖音最火晒娃的句子(2022抖音最火晒娃的句子(合集59句))
2024年3月19日 08:50
邀请在线社区(哪个好心人给个数码之家的邀请码 在线等啊 谢谢各位)
2024年6月20日 23:40
杜月笙话经典语录?民国黑帮大亨杜月笙经典语录 我就是靠两只手,一身胆闯出来的
2024年5月23日 15:20
六年级上册语文第二课《山雨》教案5篇?小学语文《山雨》优质课教学设计
2024年4月17日 19:40