平行四边形的认识ppt(小学平行四边形的概念是什么)
本文目录
小学平行四边形的概念是什么
平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。
平行四边形的性质:
平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
平行四边形ABCD中E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
小学数学《认识三角形与平行四边形》课件【三篇】
【 #课件# 导语】传统的教学手段枯燥无味,没有直观的形态供学生了解。有了课件教学,使古板变生动了,抽象变形象了,深奥变浅显了,沉闷变愉悦了。不但激发了学生的学习兴趣,更有利的使学生理解其意义。下面就是 为您收集整理的小学数学《认识三角形与平行四边形》课件,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!
小学数学《认识三角形与平行四边形》课件篇一
1知道三角形高、中线、角平分线的定义
2会做任意三角形高、中线、角平分线
重点会做任意三角形高、中线、角平分线
难点会做任意三角形高、中线、角平分线
教学方法讲练结合、探索交流课型新授课教具投影仪
教师活动学生活动
一三角形的高
1复习:过点A做BC的垂线,垂足为D
2在黑板上做△ABC,过点A做对边BC
的垂线,垂足为D,我们
就将线段AD称为△ABC的高
3高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂
足之间的线段称为三角形的高
例如在上图中,我们从△ABC的一个顶点出发,向它对边BC所在
的直线作垂线,垂足为D,线段AD就是三角形的高
注:1)三角形的高必为线段
2)三角形的高顶点垂直于对边
3)三角形有三条高
为了将这三条高加以区别,我们把AD称为BC边上的高
例:做出下列三角形的三条高
1锐角三角形:
可由教师先做示范,然后再让学生自行画出
其余两个
2直角三角形
由于∠C等于900,说明AC⊥BC,那么BC
边上的高即为AC,AC边上的高即为BC,
3钝角三角形
二,三角形的角平分线
1引入:一知△ABC,做∠A的平分线AD交BC与点E,线段AE就称为△ABC的角平分线
2定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段称为三角形的角平分线
3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线
2)三角形的角平分线顶点平分三角形的一内角如上所示,△ABC的角平分线AE平分∠A,即∠BAE=∠CAE=∠BAC
3)三角形有三条角平分线
为了将这三条角平分线加以区别,我们把AE称为∠BACD的角平分线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形
钝角三角形
三,中线
1引入:如右所示,取BC的中点F,连结AF,那么线段AF就称为△ABC的中线
2定义:在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线
如上所示,线段AF就是△ABC的中线
31)三角形的中线必为线段
2)三角形的中线必平分对边如上所示,线段AF是△ABC的中线
必有:BF=CF=BC
3)三角形有三条中线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形:
钝角三角形
素材A:
1在△ABC中,AD是角平分线,
BE是中线,∠BAD=400,则
∠CAD=,
若AC=6cm,则AE=
素材B:
2下列说法正确的是()
A三角形的角平分线、中线、高都在三角形的内部
B直角三角形只有一条高
C三角形的三条至少有一条在三角形内
D钝角三角形的三条高均在三角形外
答案:1400、6㎝2C
小学数学《认识三角形与平行四边形》课件篇二
1、知识与技能目标:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。
2、过程与方法目标:在认识三角形的基本特征及底和高的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。
3、情感、态度与价值观目标:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的兴趣和积极性。
教学重点:认识三角形的基本特征,认识三角形的底和高。
教学难点:懂得底和高的对应关系,会画三角形指定边上的高。
教学准备:小棒、三角板、导学案、多媒体课件等。
教学过程:
一、联想揭题
师:刚才,看到有一个家,你会想到什么?
生:房子
师:(课前在黑板上画好一幅房子示意图)
下面请同学看黑板,板上有一幅房子图,从图中你可以想到我们学过的什么图形?
生1-2-3:三角形、长方形--
师:根据我们已学的知识,你能在推理的基础上,说一说,这节课我们学习什么?
生:三角形
师:真棒!这节课我们就一起走进三角形的世界!(板书三角形)
二、探究新知
(一)认识三角形
1、想一想(联想)
师:看到“三角形”,你想到了什么?
生:
2、说一说(举例)
师:从房子图上,我们找到了三角形,想想生活中的场景、结合平时观察,你能从什么地方的图上找出三角形?
生:自行车上、电线杆上----
师:(出示图片)我也在课前找了一些图片,请大家一起来看一看
3、做一做(操作)
师:数学来源于生活。平时观察中,我们能发现三角形,你能创造出三角形吗?
生:能
师:(课前准备:3根小棒、方格纸、一副三角尺)
学生活动:
请你们拿出课前自己准备好的小棒,每人做一个三角形。
(请一个学生上前面摆)
师:你们是这样摆的吗?
生:是的
4、画一画
师:好,请同学们在纸上画出一个三角形。同时思考什么样的图形是三角形。
(学生画三角形,请一生上黑板画一个三角形)
师:表扬,画好的同学有
师:请同学生们观察我们摆出和画出的三角形,联系生活的图形说一说什么样的图叫三角形?
生1-2-3-4-
师:这就是三角形的定义:板书
师:我们知道有三条线段首尾连接的叫三角形。让你给它各部分起个名称分别叫什么呢?
生:
师:(显示PPT三角形名称)(板书3个顶点、3条边、三个角)
教师:板书)如果在三角形的三个顶点上分别写上三个不同的大写字母,如:A、B、C,那么这个三角形就是“三角形ABC”,也可以称为“三角形ACB”或“三角形BAC”等。
教师:再说说,三角形ABC的3条边、3个角、3个顶点分别是什么?3条边:AB、AC、BC;3个顶点:A、B、C;3个角:∠A、∠B、∠C。
五、判断三角形
师:同学们对三角形认识了,我们一起来看看下面的图形哪个是三角形?
(PPT)
六、画图
师:大家对三角形的基础知识掌握得很好,下面请同学们在导学案方格上任连三个点画出三角形。
学生操作
师:(讲解)你是如何画的?
生1-2-3--
提问:观察图形,你有什么发现?
引导学生发现:不在同一条直线上的三个点都能画出一个三角形。
师:有没有同学连在一条线上的三个点?你们为什么不连?
过渡:请大家用笔将这四个点都连起来,想象一下,现在这连好的图形像我们屋顶的~生:梁
(二)、三角形的高
1、引出高的定义
师:(PPT)出示人字梁这些线段中,哪一根最特殊?
生:中间的一根
师:为什么?
生:
师:(揭示高的定义)在数学上,人们把:从三角形的一个顶点向它的对边作一条垂直线段,这条垂直线段就是三角形的高,(板书:画出三角形的高,标上直角标记,并在所画线段的旁边标出“高”字)这条对边是三角形的底。(板书:底)
(黑板)随之板书)强调:高要用虚线表示,并标上垂直符号。
PPT视频画高
2、教学确定底、画高
师:通过观看,闭上眼睛联想一下,画高就和我们以前学的画什么差不多?
生:画垂线
师:现在,你们一定能画出三角形指定的高,请你画一画(完成导学案中的第4题)
叫学生上黑板画一画学生作高,师指导。
展示学生作业
让学生说说如何作高的。
3、摆三角形的高
师:在摆的三角形上摆出它的高。你有什么发现
4、画出下面三角形各边对应的高。
学生动手
三、巩固练习
完成书第76页练一练
讲解
四、总结拓展
1、欣赏三角形元素的图片、设计理念、三角形文化运用等
2、画直角三角形、钝角三角形高
小学数学《认识三角形与平行四边形》课件篇三
预习要求:看教科书第2—3页,做一做练习一第1-3题。
教学目标:
1.通过把长方形或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道这两个图形的名称;并能识别三角形和平行四边形,初步知道它们在日常生活中的应用。
2.在折图形、剪图形、拼图形等活动中,体会图形的变换,发展对图形的空间想象能力。
3.在学习活动中积累对数学的兴趣,增强与同学交往、合作的意识。
教学重点:
直观认识三角形和平行四边形,知道它们的名称,并能识别这些图形,知道它们在日常生活中的应用。
教学难点:
让学生动手在钉子板上围、用小棒拼平行四边形。
教学用具:
长方形模型、长方形和正方形的纸、课件、小棒。
教学过程:
一、复习铺垫
出示长方形问“小朋友们,谁愿意来介绍一下这位老朋友?他介绍得对吗?”接着出示第二个图形(正方形),问:“这个老朋友又是谁呢?”再出示圆:“它叫什么名字?这是我们已经认识的长方形、正方形和圆三位老朋友。我发现你们很喜欢折纸,是吗?今天我特意为大家准备了一个折纸的游戏,高兴吗?
二、启发思维、引出新知
1.认识三角形
(1)教师出示一张正方形纸,提问:这是什么图形?
学生回答:这是正方形。
师:你能把一张正方形纸对折成一样的两部分吗?
学生活动,教师巡视,了解学生折纸的情况。
组织学生交流你是怎样折的,折出了什么图形?
师:我们现在折出来的是一个什么图形呢?
生答:三角形。
师:小朋友们一下就认识了我们的新朋友。对了,这就是三角形。出示并贴上三角形。
板书:三角形
(2)提问:这样的图形好像在哪儿也看到过?想一想?
先在小组里交流。学生回答。
老师也带来了几个三角形。
师小结:在我们的生活中有许多物体的面是三角形面,只要小朋友多观察,就会有更多的发现。
2.认识平行四边形
(1)这是一张什么形状的纸?(演示长方形纸)怎样折一下,把它折成两个完全一样的三角形?
(2)学生先想一想,然后同桌商量着试折。教师巡视
(3)交流。你们会像他一样折吗?
(4)折好后把两个三角形剪下来。要想知道这两个三角形是不是完全一样,你能有什么办法?(把它们叠在一起)这就是完全一样。
(5)现在我们手里都有这样两个一样的三角形,用它们拼一拼,看看能拼出什么图形?学生分组活动,教师巡视。
交流探讨。同学们可能拼出以下几种图形:三角形、长方形、四边形、平行四边形。每出现一种拼法,请一位同学在投影仪上向大家展示。
师:这个图形真漂亮,它叫什么名字呀!这个图形就是我们要认识的另一个新朋友——平行四边形。(出示图形,并板书:平行四边形)(板书)
出示一个长方形的模型,提问:“这个图形的面是一个什么图形?”学生回答后,老师将这个长方形轻轻拉动,这时出现的是一个平行四边形。提问:“现在这个图形的面变成了一个什么图形?”
小结:我们已经认识了长方形,其实只要把它稍微变一变,就是一个平行四边形了,你看:(演示长方形变平行四边形)。对我们生活中有很多地方就利用了平行四边形可以变的特点制作了很多东西,如:篱笆、楼梯、伸缩门、可拉伸的衣架等。
三、体验深化
(P3做一做2)画出自己喜欢的图形
三、练习巩固
(1)练习一第1题。教师在大屏幕上出示练习一第1题图,学生分组找学过的平面图形并涂一涂,最后全班交流;
(2)练习一第2、3题。学生独立完成。
板书设计
认识图形(二)
三角形、平行四边形
平行四边形的认识
对平行四边形的认识如下:
平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。在欧几里德几何中,平行四边形是具有两对平行边的简单四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
平行四边形的性质如下:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(4)夹在两条平行线间的平行四边形的高相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(6)连接任意四边形各边的中点所得图形是平行四边形。
(7)平行四边形的面积等于底和高的积。
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等份。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积。
什么是平行四边形的定义
平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
1、平行四边形的定义和性质
平行四边形是指具有两对对边分别平行且长度相等的四边形。其中,对边又被叫作非相邻边,而不是顶点的边叫作对边。平行四边形的一个重要性质就是其对边是平行且相等长的。
2、对边的平行性
平行四边形的对边是平行的,这意味着它们永远不会相交。无论平行四边形是矩形、正方形还是菱形,其对边都是平行的。这个性质是平行四边形的基础特征,也是平行四边形的定义之一。
3、对边的相等性
除了平行性之外,平行四边形的对边还具有相等的特点。这意味着对边的长度相等。例如,在矩形和正方形中,每对对边的长度都是相等的。
4、平行四边形的其他性质
除了平行边的特点之外,平行四边形还具有一些其他重要的性质。其中包括:相邻角的补角性质,即相邻的内角之和为180度;对角线的性质,即两条对角线互相平分,并且对角线长度相等;以及对边角的对等性,即对边角相等。这些性质构成了平行四边形的完整定义和特征。
平行四边形具有平行性,即其对边是平行的。平行四边形的对边也具有相等的特点,即对边的长度相等。这些性质是平行四边形的基本特征,也是平行四边形的定义之一。
除了平行性和对边的相等性,平行四边形还具有其他重要的性质,包括相邻角的补角性质、对角线的平分性以及对边角的对等性。了解这些性质有助于理解和应用平行四边形的几何学知识,并能够解决与平行四边形相关的问题。
更多文章:
氨合成塔的内型有哪些?工作压力为23.5MPa的尿素合成塔为几类容器依据是什么
2024年5月8日 17:40
trouble maker歌词(trouble maker歌词的中文翻译谢谢)
2024年4月10日 11:30
郑州理工职业学院毕业论文怎么写?理工类毕业论文写哪些题目比较好写 - - ,专业是应用电子
2024年5月20日 07:20
丧钟为谁而鸣的作者(海明威的《丧钟为谁而鸣》,到底讲述了一个什么样的故事)
2024年5月3日 14:50